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Abstract. A probed optical lattice is modelled as a driven anharmonic oscillator with noise. For specific
values of the probe intensity and detuning, atoms are forced in bistable solutions. The friction and fluctu-
ations that arise from laser cooling, determine the equilibrium between these two modes of vibration. The
distribution determines the absorption spectrum and the transient emission spectrum that is emitted by
the optical lattice after the probe has been switched off.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 42.50.Md Optical transient
phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation,
and self-induced transparency – 42.65.Pc Optical bistability, multistability, and switching

1 Introduction

Optical lattices [1–4] are popular systems often used as
scale model in classical and quantum mechanics. They
are formed when atoms are placed in the periodic light
field that results from the superposition of a number of
plane optical waves. Laser cooling puts the atoms into a
single internal state, where they are subject to the light-
shift potential. Although this potential is anharmonic, as
shown experimentally [5,6], most situations were analysed
and discussed in the harmonic approximation. If an opti-
cal lattice is probed by a weak-intensity beam of tunable
frequency [7], the atoms undergo a periodic force oscillat-
ing at the difference frequency between probe and lattice
waves. This turns the system into a driven anharmonic
oscillator, where the nonlinearity results from the higher
potential regions which were weakly populated in the un-
driven case. The driven optical lattice may therefore be
an interesting physical system to study phenomena like
chaos [8], non-linear resonances [3] and mechanical bista-
bility [9].

This paper presents a theoretical study of bistable mo-
tion in an optical lattice. Bistability can occur because the
resonance frequency of a nonlinear oscillator depends on
the amplitude of oscillation [10]. A well-know microscopic
demonstration of mechanical bistability is formed by elec-
tromagnetically driven electrons revolving in a static mag-
netic field [11,12]. In this system dissipation is weak and a
very accurate measurement of the hystereses in the reso-
nance spectrum can be made. Atoms in an optical lattice,
however, are also subject to friction forces and diffusion
resulting from spontaneously emitted photons [13]. Bista-
bility is affected by these fluctuations. One can imagine
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that the atom jumps continuously between the different
stable solutions. The population of the stable states is de-
termined by the dissipative forces. This stands in contrast
to the electron cyclotron (and to most optically bistable
devices [14]), where only one stable state is excited at a
time.

The system of a driven anharmonic oscillator in con-
tact with a thermal bath has been studied both as a
classical and as a quantum mechanical system. Numer-
ical solutions of the master equation [15,16] and of the
stochastic Schrödinger equation [17] provide insight into
the quantum-classical correspondence. We present a clas-
sical analysis of the driven anharmonic oscillator, as a
model of a driven optical lattice. The equations of mo-
tion are studied in the frame rotating at the frequency of
the driving force. In the rotating-wave approximation, the
time evolution of the phase-space distribution is described
by a Fokker-Planck equation with a Hamiltonian that is
time independent in the rotating coordinates. This ap-
proximation is appropriate in the parameter range where
chaos does not occur (or possibly swamped in the noise).
In this case, the Fokker-Planck equation has an equilib-
rium solution. As an application of the model to an optical
lattice, we use this solution to calculate the probe absorp-
tion spectrum and the transient emission by the lattice
after the switch-off of the probe beam (Sects. 6 and 7).
Our method can be generalized in a number of directions.
A more realistic description, with several internal states
could be used to properly account for the laser cooling.
The Fokker-Planck equation could also be extended to a
Wigner-function approach to include quantum-mechanical
coherences and fluctuations. As we have recently shown
[9], however, the basic ingredients to account for the
observed phenomena are already present in this limited
model.
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Fig. 1. The scheme of the standard lin ⊥ lin configuration
with four laser beams is a possible setup to which our model
can be applied. The probe beam is directed along the x-axis
of symmetry. The interference of the lattice and probe beams
generates the optical potential given in equation (1).

2 Optical lattice as anharmonic oscillator
with noise

Although we will limit the analysis to one dimension,
the starting point of the physical problem is a three-
dimensional four-beam optical lattice [18], which results
from the superposition of monochromatic waves with fre-
quency ck and wave vectors directed under an angle θ with
respect to the symmetry axis. A possible configuration is
the standard lin ⊥ lin setup as illustrated in Figure 1.
Light forces arrange the atoms in a periodic structure with
a spatial frequency along Ox 2κ = 2k cos θ. This system
is now probed with a weak-intensity beam of tunable fre-
quency. We take this wave in the x-direction, and call δ
the difference frequency from the carrier waves. In the
following, we restrict the study of the atomic dynamics
to the x-axis only. This one-dimensional approach is rea-
sonable when the natural eigenfrequencies found for the
transverse motion differ from those found along Ox (see
Fig. 1). We further assume that the optical detuning of the
light waves from the atomic transition is much larger than
the natural line width, so that dissipative forces (radiation
pressure) can be neglected compared to the reactive forces
[19]. Furthermore, we assume that a single optical poten-
tial is sufficient to describe the anharmonic motion of the
atoms. This potential can either be the dipole potential of
a far-off resonant lattice [20–22], the effective potential in
the jumping regime [13,23] or the lower potential curve of
the oscillating regime [24,25]. We thus suppose that the
force acting on the atom is the gradient of the potential

V (x, t) = −1
2
Vlcos2κx

+ Vpε+ sin(kx+κx−δt) + Vpε− sin(kx−κx−δt). (1)

The first term V (x) = − 1
2Vl cos 2κx is the potential of

the lattice without probe, with height Vl proportional to
light intensity Il. The two time-dependent components in

equation (1) arise from the interference between the probe
beam and the lattice waves, and therefore has strength
Vp = Vl

√
Ip/Il when the probe beam intensity is Ip. They

have numerical prefactors ε+ and ε− on the order of unity
which depend on the specific atomic transition and on the
beam polarization.

The mechanics of the atoms in the lattice is described
by Newton’s equations

ṗ+ γp+
d
dx
V (x, t) = F (t), mẋ = p, (2)

with the potential (1). In our model, the friction has
damping rate γ and the Langevin force F (t) has zero mean
and is delta correlated:

〈F (t)〉 = 0, 〈F (t′)F (t)〉 = 2Rδ(t′ − t).

The brackets denote the ensemble average and R is the
momentum diffusion constant. The friction and fluctu-
ating forces are modelling the laser cooling due to the
coupling to the other potentials [26]. These forces can
be assumed to act locally in the jumping regime, where
many optical pumping cycles occur during one period of
oscillation in the potential well. We do not take into ac-
count a position or velocity dependence of γ and R. In
absence of the probe beam, Ip = 0 and motion is re-
stricted to the minima located at positions aj = jπ/κ.
There the potential is harmonic with vibrational frequency
ω0 = κ

√
2Vl/m. For low diffusion, the system becomes the

damped harmonic oscillator, which has mean fluctuations
related to the temperature T by

1
2m
〈p2〉 =

m

2
ω2

0〈(x−aj)2〉 =
kBT

2
=

R

2mγ
· (3)

The full equation of motion (2) can exhibit a large va-
riety of physical behaviour [27–29]. For the deterministic
case, when R = 0, there exist regions in parameter space
where motion is chaotic, and regions where the system is
damped into resonant periodic orbits or higher harmonics
and even subharmonics of the driving frequency δ [28–30].
The trajectories can also travel many wavelengths. When
position-dependence in the (weak) time-dependent force
and higher order non-linear terms in the light-shift force
are neglected, the system is equivalent to a thermal Duffin
oscillator. In the present study we will only consider mo-
tion in a single well, i.e. −π < 2κx < π. We also restrict
our analysis to periodic states with frequency δ. We will
however use the full cosine form (1) and, of course, in-
clude noise. Clearly, the model presented here as intended
to describe a probed optical lattice, might be applicable
to Brownian motion in other driven nonlinear systems.

3 Equations of motion in the rotating frame

In order to study bistability, it will be convenient to
use coordinates in the co-rotating frame. We introduce
two pairs of variables, the Cartesian co-rotating variables
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u(t), v(t) and the corresponding canonical circular coordi-
nates n(t), φ(t):

u+ iv =
√

2n eiφ = (x+ ip/mδ)eiδt, (4)

for an atom near aj = 0. A pair of first order equations
for u, v or n, φ is obtained when these relations are sub-
stituted in the equation of motion (2). Since the trans-
formation is canonical, the coherent part of this equation
derives from the transformed Hamiltonian. It follows di-
rectly from the application of the Jacobi theorem [10] that
the new Hamiltonian H(u, v, t) is the difference between
the Hamiltonian of an harmonic oscillator of stiffness δ
and the original Hamiltonian E(x, p, t)

mδH(u, v, t) =
1

2m
p2 +

m

2
δ2x2 −E(x, p, t)

=
m

2
δ2x2 − V (x, t), (5)

where x, p must be expressed in u, v. In the new frame, we
make the rotating-wave approximation, which eliminates
the time dependence of the driving force. This approxi-
mation is fairly good when δ is in the vicinity of ω0. In
the following, nearly resonant excitation is assumed to be
dominant compared to other excitation processes, such as
parametric or nonlinear resonances. By neglecting all fast
oscillating terms in eiδt the equations of motion become
of the form

u̇ =
dH
dv
− γu

2
+ ξ, v̇ = −dH

du
− γv

2
+ ξ′, and (6)

ṅ =
dH
dφ
− γn+ 2D +

√
2n ξ, φ̇ = −dH

dn
+

1√
2n
ξ′, (7)

for the Cartesian, and for the and circular co-rotating co-
ordinates. In these equations, ξ, ξ′ are white noise sources:

〈ξ(t′)ξ(t)〉 = 〈ξ′(t′)ξ′(t)〉 = 2Dδ(t′ − t), 〈ξ′(t′)ξ(t)〉 = 0,

and the spatial diffusion constant is D = R/2(mδ)2. The
effective Hamiltonian is calculated after substitution of
equation (1) in equation (5) and has the form

H(u, v) = H(n, φ) = H(u, v, t)

=
1
2δ

[
δ2n− U(n)− 2f(n)u

]
. (8)

It is valid for both pairs of equations (6, 7). The overline
denotes the time average over one period. The average
potential energy of the bare lattice contributes the term

U(n) =
2
m
V (x) = − ω2

0

2κ2
J0(κ
√

8n)

to this effective Hamiltonian. Here J0 is a Bessel function.
The probe beam results in a force independent of time
with acceleration f given by

f(n)=
ω2

0

κ2

√
Ip

2nIl

[
ε+J1((k+κ)

√
2n)+ε−J1((k−κ)

√
2n)
]
.

u0

H
(u

,0
)

→

2

1
0

u1 u2

u →
Fig. 2. Projection of the Hamiltonian on the plane v = 0.
The maximum and minimum, (u1, 0) and (u2, 0) and the sad-
dle point (u0, 0) are indicated. The parameters of force and
detuning are κf = 0.02ω2

0 and δ = 0.85ω0.

Since Ip � Il, higher order terms of the Bessel function
J1 may be neglected and f can be taken as a constant,
when the atoms remain reasonably close to the potential
minimum. This corresponds to a pure oscillating driving
force mf cos δt in the original equation of motion (2). The
Hamiltonian H(u, v) has the shape of a sombrero (Mexi-
can hat) when plotted as a function of u, v (see Fig. 2). For
nonzero f this hat is tilted in the u-direction. A Hamilto-
nian of similar form was used in reference [15].

In the rotating-wave approximation, the friction causes
damping of the amplitude n, but has no effect on the
phase. The momentum fluctuations gives rise to an
isotropic diffusion in phase space with the diffusion con-
stant D. The two noise sources of u and v are white and
independent. The noise in n and φ is also described by two
independent noise terms. (They are in fact the linear com-
binations of the u, v noise, but we use the same notation
for simplicity.) Since the corresponding jump factors of the
noise in equation (7) are not constant, the stochastic dif-
ferential equations must have a well defined interpretation
rule. In the present paper, we use the Ito interpretation,
which assumes that the strength of the noise jumps in n
are determined by the value of n just before a jump [31,
32]. This gives rise to a drift term 2D caused by the fluc-
tuations. In circular coordinates, such a drift term is ex-
pected, since the diffusion must increase the average value
of n at n = 0, while the noise in n vanishes at the origin.

When f = 0, γ = κ2D = 0, equation (7) has constant
solutions, i.e. with (ṅ, φ̇) = (0, 0), for any value of the
amplitude and phase when δ is chosen to be equal to the
characteristic frequency ω, defined by

ω2(n) =
d

dn
U =

1
mn

x
d

dx
V =

ω2
0

κ
√

2n
J1(κ
√

8n). (9)

Hence, ω(n) is the frequency of the free motion in the
anharmonic potential well as a function of amplitude. For
the rotating-wave approximation to be valid, the rate φ̇
must be small compared to δ. This implies that the motion
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Fig. 3. Resonance curve of an anharmonic oscillator driven
with force κf = 0.02ω2

0 and damped with rate γ = 0.051ω0 .
The thin solid line represents the free vibrational frequency
ω(n), in absence of driving and damping. Amplitude

√
n is

plotted versus frequency ω. In this example the detuning
δ = 0.85ω0 lies in the range δ− < δ < δ+, and three sta-
tionary solutions can be found. Two high amplitude solutions
have vibrational frequencies close to δ and the low amplitude
solution almost has the harmonic frequency ω0, when undriven.
The figure shows how these free vibrational frequencies can be
determined graphically.

is approximately harmonic. The non-linear dependence of
the vibrational frequency on the amplitude is shown in
Figure 3.

4 Bistability without fluctuations

4.1 Stationary solutions

In absence of diffusion, when D = 0, the evolution is de-
terministic and the equations of motion (7), with equa-
tions (8, 9) become

δṅ = fv − γδn, 2δnφ̇ = (ω2 − δ2)n+ fu.

In this situation, fixed stationary solutions with (ṅ, φ̇) =
(0, 0) can occur. It follows from elimination of the phase
φ, using equation (4), that at such a point

γ2δ2 + (ω2 − δ2)2 = 2f2/n.

The driving frequency δ of the stationary solutions is
therefore expressed as a function of n by

δ2(n) = ω2 ±
√

2f2/n− ω2γ2 + γ4/4− γ2/2. (10)

The two signs correspond to a detuning above and below
the resonance frequency ω(n). When the two branches are
connected, a resonance curve with n as a function of δ
is obtained, as plotted in Figure 3. It has the shape of

3 1 2

u −→

v
−→

u0 u1 u2

Fig. 4. Trajectories in phase space. The two trajectories
that are plotted solid include friction with the damping rate
γ = 0.02ω0. These run from the instable point to the stable so-
lutions. The dotted line represent the critical orbit in absence
of friction. This divides the phase space in the domains 1, 2
and 3. Force and detuning are κf = 0.02ω2

0 and δ = 0.7ω0.

a deformed Lorentzian curve and bends over [10]. If the
potential is wider than the harmonic potential for large x,
the oscillation frequency ω(n) decreases with n, and the
peak turns to the left. For a narrower potential the peak
turns to the right. The maximum amplitude is reached at
the point where the two branches connect.

We consider the cosine potential which is wider than
a harmonic potential. In an interval δ− < δ < δ+ for the
driving frequency, with δ+ < ω0, bistability occurs. Here
exist three stationary solutions, instead of one. These we
denote by (n1, φ1), (n0, φ0), (n2, φ2), with n1 < n0 < n2.
The solution 1 is stable and has a small amplitude n1. One
of the two high-amplitude solutions, 2 is also stable but the
third solution, labelled with index 0 is instable. The driv-
ing frequency is below the resonant frequency ω1 = ω(n1)
of the small-amplitude mode, and slightly above the reso-
nant frequency ω2 = ω(n2) of the high-amplitude mode, so
that ω2 . δ . ω(n0) < ω1 . ω0. As shown in Section 6,
an atom will start to oscillate with the free vibrational
frequency if the driving field is suddenly switched off.

Which of the two stable solutions is excited depends
on the initial conditions. Two trajectories that start at
the instable point are plotted in Figure 4. At the stable
endpoints (n1, φ1) and (n2, φ2), position and mechanical
energy in the original frame, of course do still oscillate
according to

x(t) =
√

2ni cos(φi+δt),

E(x, p) =
1

2m
p2 + V (x)

=
m

2

[
δ2ni + U(ni) + fui cos 2(φi+δt)

]
.
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The bistability interval is bounded by the points δ− and δ+
on the negative branch, where n2 = n0 and n1 = n0. These
values are determined by equation (10) and dδ/dn = 0.
The driving force and the amplitudes at these boundaries
are found to be related by

f2(n) =
(
K ±

√
K2 + 2γ2κ2U + γ4/4 + γ2/2

)
nK, with

K(n) = −n d
dn
ω2 = ω2 + 2κ2U = ω2

0J2(κ
√

8n).

This expression of the force can be used in a parameterized
plot of the two solutions of δ(n) versus f(n) where the
amplitude n is the parameter. The bistability interval can
then be read off directly from the resulting figure.

4.2 Hamiltonian motion

In absence of all dissipative forces, i.e. when both D = 0
and γ = 0, the trajectories are periodic and have a well
defined pseudo energy ε = H(n(t), φ(t)). Recall that the
Hamiltonian surface has the shape of a sombrero. The
trajectories in phase space are (horizontal) cross-sections
of this surface. The circular valley around the top of the
hat is approximately the ring ω(n) = δ. Since the hat is
tilted, the valley has a saddle point and a minimum on op-
posite sides (see Fig. 2). Of course, the stationary points
correspond precisely to the saddle point, the maximum
and the minimum. The energy values are denoted with
ε0, ε1, ε2. The saddle point at energy ε0 is the instable
point. In the range, ε0 ≤ ε ≤ ε1, the energy is double val-
ued. For these values, one large orbit encloses a second,
smaller orbit. In this range, we label the inner orbits with
1 and the outer orbits with 3. The orbits with energies
ε2 ≤ ε < ε0 have the label 2. Orbits with energy ε1 < ε
also have label 3, since they connect to the outer orbits at
ε1. The orbits are thus denoted with ni(ε, t), φi(ε, t) and
have periods Ti(ε), according to their energy ε and phase-
space domain i = 1, 2, 3. For the stable points we have
n1(ε1, t) = n1 and n2(ε2, t) = n2, with phases φ2 = 0,
φ1 = φ0 = π. The critical orbit with energy ε0 crosses the
instable point and forms the border between domains 1, 2
and 2, 3 (see Fig. 4). When friction is included, the stable
points do no longer coincide with the maximum and min-
imum of the Hamiltonian, but are slightly displaced. The
dynamics in the vicinity of these stable points is described
in Appendix A.

5 Bistability under action of fluctuations

5.1 The Fokker-Planck equation

In presence of the diffusion terms, the equations of mo-
tion (7) are stochastic, and do not have a stationary state.
It is useful to introduce the time-dependent distribution
P (n, φ, t) = 〈δ(n−n(t))δ(φ−φ(t))〉 in phase space, defined

for the ensemble average of the trajectories. The time-
evolution of P is described by the Fokker-Planck equa-
tion [32]

Ṗ =
d

dn

[
γn− dH

dφ
+ 2Dn

d
dn

]
P +

d
dφ

[dH
dn

+
D

2n
d

dφ

]
P.

This equation is equivalent to the stochastic differential
equations (7) for (n, φ). One can also verify this partic-
ular form most easily by first deriving the Fokker-Plank
equation from the stochastic differential equations (6) for
the variables (u, v), and then transforming to circular co-
ordinates.

The distribution P (n, φ, t) does evolve into an equilib-
rium state. This steady-state solution P (n, φ) contains the
information which determines the absorption rate and the
frequency spectrum of scattered light as we shall demon-
strate in Sections 6 and 7. Because the Hamiltonian rep-
resents a pseudo energy and not the systems free energy,
the equilibrium solution is not given by a straightforward
Boltzmann solution [31].

5.2 The low-temperature approximation

In the limit of weak diffusion, when D is small, the Fokker-
Plank equation can be linearized around a stable point.
The steady-state solution of this linearized equation is
valid in the vicinity of the stable point. The two local
stationary solutions are

Pi(n, φ) =
αiγ

DCiTi(εi)
exp−

[
γ

DCi

∣∣∣Hi(n, φ) − εi
∣∣∣] ,

(11)

for (n, φ) near (ni, φi), with the effective Hamiltonian Hi

and orbit times Ti given in Appendix A, and with

Ci =
1
δ

[
δ2 − ω2

0J0(κ
√

8ni)
]
. (12)

For small friction the original Hamiltonian, equation (8)
can be substituted. The absolute value in equation (11)
ensures that for both solutions P1 and P2 population is
maximal at the stable point (ni, φi).

Obviously, the full solution in the limit of weak fluc-
tuations is of the form P (n, φ) = P1(n, φ) +P2(n, φ). The
average width of the two peaks in P are both approx-
imately equal to 2D/γ = kBT/mδ

2, although the peaks
can be squeezed as an effect of the Hamiltonian. The aver-
age spread in momentum of each of the peaks in the driven
case and the momentum width of the undriven system as
given in equation (3) are equal. Due to the rotating-wave
approximation, however, the width in position is broad-
ened, as compared to the undriven situation. This is un-
derstandable, but not quite correct, because for a linear
oscillator the spread in position is unaffected by the driv-
ing field. On the other hand, the nonlinear potential and
driving force actually might very well result in a broad-
ening of the position. The respective populations of the
peaks are α1 and α2, so that α1 + α2 = 1. The remaining
part of this section is aimed to determine these popula-
tions.
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5.3 Equilibrium distribution in the low-friction
approximation

In order to obtain an analytical expression of the steady-
state distribution P (n, φ), we make the secular approx-
imation. This is valid in the regime of weak relaxation,
where both the rates γ and κ2D are small compared
to the orbital frequencies. If we consider the orbital fre-
quency of the high amplitude state, this condition implies
γ2 � (δ − ω2)ω0 which can be easily fulfilled experimen-
tally. Of course, in this approximation, the temperature as
defined in equation (3) can still have any value. The de-
tails of the calculation are presented in the Appendix B.
The method consists in deriving a Fokker-Planck equation
for the pseudo-energy distribution Fi(ε, t) = 〈δ(ε− ε(t))〉,
where the index i stands for the domain i = 1, 2, 3 in
phase space. The equilibrium solution has the form of a
Boltzmann distribution

F1(ε) =
γ

2ND
exp

γ

DC1
(ε− ε0),

F2(ε) =
γ

ND
exp

γ

DC2
(ε0 − ε),

F3(ε) =
1
2
F2(ε). (13)

Note however that the sign of the exponent changes at the
instable point. In these equations, N is a normalization
factor. The population of the different domains

α1 =
∫ ε1

ε0

dε F1, α2 =
∫ ε0

ε2

dε F2, α3 =
∫ ∞
ε0

dε F3,

are given by

α1 =
C1

2N

[
exp

γ

DC1
(ε1 − ε0)− 1

]
,

α2 =
C2

N

[
exp

γ

DC2
(ε0 − ε2)− 1

]
,

α3 =
C2

2N
· (14)

The normalization α1 + α2 + α3 = 1 therefore determines
the value ofN . The probability distribution in phase space
P at is related to Fi and the Hamiltonian by

P (n, φ, t) =
Fi(H(n, φ), t)
Ti(H(n, φ))

· (15)

Here Ti is the period of an orbit of energy ε given by the
following integral (where the integration interval ranges
from the minimum to the maximum value of n on the
orbit):

Ti(ε) =
∫

dn
4δ√

8f2n− (2δε+ U − δ2n)2
· (16)

The relationship (15) is valid for all times t, not just in
the steady state. Near the critical orbit, the period di-
verges, as described by equation (A.3). Therefore, at the
borders of the phase-space regions, the density P drops

�/2�−�/2� 0

0

v
−→

u −→
Fig. 5. Density plot of the stationary distribution P (u, v). The
same Hamiltonian as in Figure 4 is used. The temperature is
taken kBT = 0.01m(ω0/κ)2. Some contour lines of constant
density are shown. These coincide with the Hamiltonian orbits.
Population density is zero on the instable orbit (dotted line).

to zero. This divides the distribution in three separate
components corresponding to the three domains in phase
space. Two components have peaks at the location of the
stable points. The third outer domain only becomes popu-
lated at high temperatures. An example of the equilibrium
phase-space distribution obtained from equation (15) with
equations (13, 16, 8) is plotted in Figure 5. The distribu-
tion of high-amplitude motion in domain 2 has a moon
shape. For small f , domain 2 becomes a ring, and the
population is squeezed in amplitude. In region 1, the dis-
tribution is approximately Gaussian.

6 Application I: Emission spectrum
in transient spectroscopy

6.1 Free motion after switch-off

As long as the system is driven by the probe beam, all
the excited trajectories have frequency δ. Consider for in-
stance an atom located in the jth potential well with a
motion

xj(t) = aj +
√

2n cos(φ+δt+jπ−kaj).

Note that the phase offset (κ− k)aj = jπ − kaj is deter-
mined by the phases of the lattice and of the probe beams
at the potential minimum, so that the atomic distributions
in all the wells will be determined by the same function
P (n, φ). The light scattered by the atom has components
of frequency ck, ck ± δ, . . . , etc. Components that char-
acterize the amplitudes of the bistable states can also be
found but they occur because of the transient response
associated with a spontaneous scattering event. They are
thus much weaker, as can be inferred from the small value
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of the ratio between the inelastic and elastic scattering
components in an optical lattice [1,33].

Another method that has been used experimentally
[9,34,35] is to switch abruptly the probe beam frequency
to a new value ck′ for which the atoms are transparent.
The atomic orbits become free, with amplitude n′, phase
φ′ and frequency ω(n′). In the rotating-wave approxima-
tion, the trajectories of atoms in potential well j after the
switch-off are

x′j(t) = aj +
√

2n′ cos(φ′+ω(n′)t+jπ−kaj) (17)

on the time scale where dissipation is not yet effective. The
excited trajectories now have a spectrum of vibrational
frequencies.

During the sudden switch-off, position and momentum
do not change. Hence, the relationship between the new
values n′, φ′ and the old values n, φ follows from continu-
ity in position and momentum x and p. If the atoms are
released at t = 0, the amplitude and phase of the driven
and free motion are related by

√
n′/n = cosφ/ cosφ′ =

δ sinφ/ω(n′) sinφ′. This gives n′ ≈ n and φ′ ≈ φ if δ is
in the vicinity of ω(n′). More precisely, the values before
switch-off can be explicitly expressed as functions n(n′, φ′)
and φ(n′, φ′) of the values after the switch-off by

n = n′ cos2φ′ +
ω2(n′)
δ2

n′ sin2φ′,

φ = arctan
ω(n′) tanφ′

δ
· (18)

This determines the distribution P ′ of the amplitude and
phase after the probe cut-off in terms of the original dis-
tribution P . By looking at the density in phase space one
obtains

P ′(n′, φ′) = P (n, φ)

√
ω(n′)
δ
− K(n′)
δω(n′)

sin2φ′.

Here, the explicit solutions (18) must be substituted. The
Jacobian can be most easily obtained via the ordinary
position and momentum variables. The mechanical energy
of an atom before and after the switch-off is

E =
m

2

[
δ2n+ U(n) + (δ2−ω2(n))n cos 2φ

]
,

E′ =
m

2

[
ω2(n′)n′ + U(n′)

]
.

Since position and momentum do not change if the switch-
ing time is fast, the mechanical energy is conserved. Hence
the amplitude n′ can also be determined from E′(n′) =
E(n, φ).

6.2 Emission signal

We consider the transient photon emission just after the
switch-off, but well before the atoms have relaxed into
their ground state again. These photons are scattered from
the carrier waves of the optical lattice. Because the probe

beam has forced a phase relation between the vibrational
motion of the atoms in the different wells, the scattered
field is predominantly in the same angular direction as
the probe beam, the x-direction. The field emitted in this
direction is

E(t) ∼ e−ikct

∫
dndφP ′(n, φ)

×
∑
j

[
e−i(k+κ)x′j(t)η+ + e−i(k−κ)x′j(t)η−

]
.

The atomic coordinates, x′j(t), given by equation (17) for
an atom in well j, with initial amplitude n and phase φ
determine the phases of the scattered waves. The sum-
mation runs over the potential wells j. The two exponents
describe the emission of a photon in the x-direction, which
follows the absorption of a photon from one of the lattice
waves. The relative strengths η+ and η− of the contribu-
tion of the two opposite directions depend on the specific
atomic transition and the polarization of the lattice waves.
The calculation of the numerical prefactors η± involve the
same parameters as the prefactors ε± in the expression (1)
of the optical potential. In some cases, it can be shown
that they are proportional (for instance in the 1/2→ 3/2
transition and jumping regime). Because the trajectories
of different atoms evolve at a different frequency, there is
a washout in the interference of the emitted field in the
x-direction, and the amplitude decays.

For t > 0, the beat signal along the probe axis normal-
ized to one atom is

S̃(t) =
∫

dndφP ′(n, φ)g(n) cos(φ+ ω(n)t+ ckt− ck′t),

with

g(n) = η+J1((k + κ)
√

2n) + η−J1((k − κ)
√

2n).

Here the Bessel functions J1 arise from the interference of
the contributions from the different wells. The signal has
the Fourier transform S(Ω). By denoting ω = Ω−ck+ck′,

S(ω) =
i
2

∫
dn

g(n)
ω − ω(n) + i0+

∫
dφP ′(n, φ)e−iφ. (19)

In the low-friction limit, the factor e−iφ in the integral
can be replaced by cosφ, because P is then an even func-
tion of φ. When the spectra are examined, two peaks can
be resolved for sufficiently low temperatures or force. The
peaks are located at ω ≈ ω2 ≈ δ and ω ≈ ω1 ≈ ω0. For
moderate values of the force f , the two peaks in the distri-
bution P (n, φ) are of comparable width, so that the spec-
tral peak around ω2 is broader, since there the frequencies
have a wider range. For small f , the peak around ω2 be-
comes narrower, due to the squeezing in phase space. A
few calculated spectra are plotted in Figure 6.

7 Application II: Absorption spectrum

Although our calculation of the equilibrium distribution
is based on the zero-friction limit, we can still use the
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)|2
→

0 0

a)c)

→
Fig. 6. Transient emission spectrum |S(ω)|2. The three
curves correspond to the different detunings: (a) δ = 0.65ω0,
(b) 0.70ω0, (c) 0.75ω0. Force and temperature are κf =
0.015ω2

0 and kBT = 0.01m(ω0/κ)2 and we used the lattice
parameters κ = k/

√
3, η1 = η2.

results to evaluate the absorption. This quantity can for
instance be deduced from the work of the probe electric
field [33]. A straight-forward calculation gives the steady-
state absorption

W (δ) =
∫

dndφP (n, φ)g(n) sinφ

in terms of the equilibrium distribution P (n, φ). In the
case of zero friction, the distribution is of the form (15)
and the absorption vanishes, because P (n, φ) = P (n,−φ).
However, we can use as a first approximation the distri-
butions (11) with the populations α1 and α2 predicted
by equations (14) of the zeroth order analysis. In the
limit of low temperature, where narrow distributions in
phase space are found, one can approximate for each com-
ponent of the distribution the average of g(n) sinφ by
its value for the stationary solution. Using the relation
sinφi = γδ cosφi /(δ2 − ω2

i ), one obtains to first order

W (δ) =
g(n1)γδ
ω2

1 − δ2
α1 +

g(n2)γδ
δ2 − ω2

2

α2.

The high-amplitude motion gives rise to strong absorp-
tion. Outside the bistability interval, there exist only one
stable state, and only a single term contributes. There ab-
sorption is weak. Examples of this absorption spectrum
are plotted in Figure 7. In the low-friction approximation,
we find that the high-amplitude mode is also excited near
δ = 0. This can only occur because for small γ the bista-
bility interval extends all the way to δ− = 0 (see Fig. 2).
In this region, however, the rotating-wave approximation
is not reliable. The absorption spectrum thus gives less
insight in the bistable dynamics than the emission spec-
trum.

0

W
(

)/
→

0
→

b)

a)

Fig. 7. Absorption spectra W (δ) in the low-friction limit. Val-
ues for the force are (a) κf = 0.005ω2

0 , (b) κf = 0.02ω2
0 , and

the temperature is kBT = 0.01m(ω0/κ)2. The same lattice pa-
rameters are used as in Figure 6. The weak peaks at δ = 0 (dot-
ted) are predicted mathematically for low values of the friction
constant γ. They appear in the range where the rotating-wave
approximation is invalid, and should not be considered as phys-
ical.

As a final remark, we note that in the low-temperature
approximation, the surprising relation W (δ) ∼ γS(δ) be-
tween absorption and emission of the probe frequency is
valid for k′ = k, n′i = ni.

8 Summary and discussion

We have presented a study of the driven motion in an an-
harmonic potential well, under the action of fluctuations.
This simple system is intended to model the recently ob-
served splitting in the emission spectrum of an optical
lattice driven by a weak probe beam [9,34]. Actually, the
experimental spectra are similar to the curves shown in
Figure 6 although the peaks look sometimes sharper.

The present model provides a reasonable qualitative
understanding of the physics that occurs in a driven opti-
cal lattice. There remain, however, a few difficulties that
prevent a full quantitative comparison with experiments.
First, the friction and fluctuations must be added to the
optical potential whilst in a real lattice it is the same field
that provides the potential and the cooling. In the model
presented here and contrary to the experimental case, it
is possible to tune independently the potential and the
temperature. In the plots shown in our letter [9], we have
taken values of T compatible with the values predicted by
the Sisyphus theory [13] for the optical potential Vl. How-
ever, a better agreement with the experimental curves can
be found by tuning T independently of Vl. The curves pre-
sented in this paper, for example, have low temperatures
but better fit the experimental data. A second drawback
comes from the fact that friction and diffusion were as-
sumed to be position independent. A third problem arises
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with the one-dimensional approximation. Experiments are
usually done in 3D lattices. Even if the probe beam excites
the motion along an eigenmode of the linearized prob-
lem, nonlinear couplings between the various directions
remain possible. However it is probably reasonable to ne-
glect these couplings when the eigenvalues of the linearized
problem are significantly different.

We think that most of these problems can be over-
come by a numerical solution of the Fokker-Plank equa-
tion in a realistic bipotential [18,33], an approach which
permits to treat in a self-consistent way the cooling and
the potential. A first step in that direction was recently
undertaken in collaboration with Peter Horak and pro-
vided phase-space distributions in qualitative agreement
with those presented here.

The authors would like to thank P. Horak and A. Picon for
helpful discussions. This work was supported by the European
Commission (TMR network “Quantum Structures”, contract
FRMX-CT96-0077).

Appendix A: Damped motion

In this appendix we study the behaviour near the station-
ary points, when friction is included. Consider the low-
amplitude stable point (u1, v1), near the maximum of the
Hamiltonian. In order to evaluate the dynamics near this
stable point in presence of friction, we expand the Hamil-
tonian. The rotated coordinates

ũ =
(u− u1)u1 + (v − v1)v1√

2n1
,

ṽ =
(v − v1)u1 − (u− u1)v1√

2n1

are governed by the equations

˙̃u =
dH1

dṽ
− γũ

2
, ˙̃v = −dH1

dũ
− γṽ

2
, with

H1(ũ, ṽ) = H(u, v)− γṽ

2
√

2n1. (A.1)

Only in absence of friction, the new Hamiltonian H1(ũ, ṽ)
coincides with the original (symmetric) Hamiltonian
H(u, v) expressed in the new coordinates. Clearly, the
damping drives the system to the stable solutions. To sec-
ond order in ũ and ṽ, H1 = ε1 + (ũ2c1 + ṽ2d1)/2. For the
other stable state, of course, a Hamiltonian H2 can be de-
fined, so that similar equations hold for variables defined
near (u2, v2). If the n-dependency of f is neglected, the
coefficients in these Hamiltonians are

ci = K(ni)/δ + di, di = fui/2δni. (A.2)

We note that ci + di = Ci as given by equation (12). The
trajectories are spiralling inwards into the stable points
(see Fig. 4)

ũ(t) = ±
√
a/c1e−γt/2 sin 2πt/Ti,

ṽ(t) =
√
a/d1e−γt/2 cos 2πt/Ti.

The amplitude is decreasing with time but the periods
given by Ti = 2π/

√
cidi are constant. For small f , the fre-

quencies of circulation about the stable points are given by

2π
T1(ε1)

=
1
2δ

(ω2
1 − δ2),

2π
T2(ε2)

=
ω0

2δ

√
(δ2 − ω2

2)J2(κ
√

8n2).

The oscillating motion in the ordinary position variable is
thus modulated with these frequencies. For the low ampli-
tude motion, the equation which is still correct if there is
just one solution, can be recognized as the beat between
a free solution (which is damped for non-zero γ) and the
forced solution at the stationary point, just as for a driven
harmonic oscillator. The oscillation frequency of the high
amplitude solution is much larger than expected due to
the nonlinearity of the potential. When we take the limit
of zero friction, the Hamiltonians Hi andH become identi-
cal. The trajectories near the stable points become closed
elliptical orbits with a constant energy ε and amplitudes
determined by a = 2(ε− εi).

Let us now consider the instable state. As ε increases
and passes the critical energy ε0, the orbits in domain 2
split into two parts at the saddle point (u0, v0), and go over
into the two orbits of 1 and 3. In the vicinity of the saddle
point, the trajectories are hyperboloids. On approaching
the saddle point the two orbits slow down so that their
orbit times diverge as

T1(ε) = T3(ε) =
1
2
T2(ε) =

1√
c0d0

log
n0d0

|ε− ε0|
, ε ↓↑ ε0.

(A.3)

Close to the critical point, the motion in domains 1 and 3
for γ = 0 is symmetrical with respect to the vertical axis
through the critical point.

Appendix B: Solving the Fokker-Planck
equation in the low-friction limit

In this appendix the method used to derive the equilib-
rium distribution of the energy ε as given by the expres-
sion (13) is described. When the damping rate is small,
motion on the fast time scale is almost Hamiltonian, and
energy is well defined. As a lowest order solution one
takes a pure (closed) Hamiltonian orbit. Then calculate
the small energy change ∆ε along this orbit. One has to
expand to second order in ∆n and ∆φ to include the effect
of the noise, which is described by Ito calculus. Of course
only the dissipative terms in equation (7) contribute. The
secular approximation thus reduces the dynamical behav-
ior to a single variable, the energy ε. On the slow time
scale of the dissipation, the energy evolves according to
the Langevin equation

ε̇ = −A(ε) +
√

2B(ε) ζ(t). (B.1)

This stochastic equation has noise source ζ, with
〈ζ(t′)ζ(t)〉 = δ(t′ − t). For the moment we have neglected
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that there can be two orbits for one energy value, and
avoid the saddle point. In the Ito calculus, the drift and
diffusion coefficients A and B are given by [31]

−AT = 〈∆ε〉, BT =
1
2
〈(∆ε)2〉.

There are two averages. We must integrate over one orbit
time T but also take the average over all possible noise
functions ξ, ξ′. In deriving these coefficients is consistent
to lowest order to approximate dH/dφ = ṅ, dH/dn = −φ̇
in the Taylor expansion of ∆ε in ∆n and ∆φ. The result is

A = A′ − d
dε
B, A′ = −γ nφ̇, B = D 2nφ̇2 + ṅ2/2n.

(B.2)

These coefficients are uniquely determined by the energy
ε and the phase-space domain 1, 2 or 3. Note that we
found that the contribution proportional to D in the drift
rate A can be written as the derivative of the energy
diffusion coefficient B. This will be of use later. The
stochastic equation of motion (B.1) is equivalent to the
Fokker-Planck equation for the time-dependent energy
distribution Fi(ε, t)

Ḟi =
d
dε

[
AiFi +

d
dε
BiFi

]
. (B.3)

We now include the full phase space so that we need the
index i to denote the energy branches that correspond
to the three domains in phase space. Conservation of the
probability current implies that the term in brackets in
equation (B.3) must vanishes at the end points ε2 and ε1.
This is automatically the case, since at these points both
A′ = 0 and B = 0. This is, however, also the case at ε0.
This means physically that flow across the critical orbits
occurs on an even slower timescale than the friction rate.

Although the energy ε = H(n, φ) of a particle is given
by its coordinates, it does not determine the coordinates.
In the secular approximation, a single particle contributes
a periodic orbit to the total phase-space distribution. It
follows from Hamilton’s equations that this contribution
equals∫ T

0

dt δ(n− ni(ε, t))δ(φ− φi(ε, t)) = δ(ε−H(n, φ)),

inside domain i. The time-dependent distributions
P (n, φ, t) and Fi(ε, t) are therefore related by expres-
sion (15). A similar relation for the energy distribution,
was used in reference [29]. Here the distribution was first
expressed in terms of the energy and velocity variables,
after which the (fast) velocity variable was eliminated.

Fokker-Planck equation (B.3) is one dimensional and
has a simple analytical steady-state solution

Fi(ε) = Fi(ε0) exp −
∫ ε

ε0

dε′
A′i(ε

′)
Bi(ε′)

(B.4)

on each of the three energy branches. Note that this so-
lution is expressed in terms of the simpler coefficient A′

defined in equation (B.2) instead of the original coefficient
A of equation (B.3). Since the flow rate across the critical
orbit is much slower than γ, the populations of the three
domains only becomes balanced when the distributions
inside are already in equilibrium. Therefore, a hysteresis
cycle can in principle be observed, provided that the pa-
rameters are varied adiabatically, but not slower that this
weak thermalisation rate.

The drift and diffusion coefficients A′i(ε) and Bi(ε)
can be expressed as integrals over n only, after φ is elim-
inated with Hamilton’s equations. Substituting these in
equation (B.2) gives

A′i(ε)Ti(ε) = 2γ
∫

dn
2δε+ U + δ2n− 2ω2n√
8f2n− (2δε+ U − δ2n)2

,

Bi(ε)Ti(ε) =
2D
δ

∫
dn

f2 + 2(δ2 − ω2)(2δε+ U − ω2n)√
8f2n− (2δε+ U − δ2n)2

,

and the periods are given by equation (16). The integra-
tion intervals range from the minimum to the maximum
value of n on the orbit. Although, the friction and dif-
fusion coefficients A′ and B become zero at the critical
orbits, the time integrated coefficients A′T and BT are
nonzero. This means that the gradients of Fi are finite at
the boundaries. It follows from (A.3) that this weak flow
across the borders only occurs near the saddle point where
the orbits slow down. It is therefore possible to make the
energy distribution continuous at ε0, provided that one
compares to sum F1(ε)+F3(ε) above ε0 with F2(ε) below
ε0. That this is reasonable can be seen by examining the
behaviour at the borders of the three phase space domains
(see Fig. 4). Because the orbits of 2 split up in two con-
tributions in 1 and 2, the drift and diffusion coefficients
divide up in the same way. The symmetry between the
domains 1 and 3 gives that

F1(ε0) = F3(ε0) = F2(ε0)/2. (B.5)

This balance serves as a boundary condition to determine
the full equilibrium solution (B.4).

It turns out that the behavior of A′T and BT is al-
most linear over the full energy range. This results in the
approximate expressions

A′i(ε)Ti(ε) = (ε− εi)γTi(εi),
Bi(ε)Ti(ε) = |ε− εi|DCiTi(εi),

for i = 1, 2, with Ci defined in equation (12). In addition,

A′3(ε)T3(ε) = A′2(ε)T2(ε)−A′1(ε0)T1(ε0),
B3(ε)T3(ε) = B2(ε)T2(ε)−B1(ε0)T1(ε0),

so that friction and diffusion are continuous across the
critical orbit. Substitution of these approximations in the
formal solution equations (B.4, B.5) results in the expres-
sions (13).

The consistency with expression (11) in the regime
of low temperature can now be verified. When the so-
lution for Fi is substituted in equation (15), one obtains
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equation (11), provided Ti is take as a constant. This can
be seen as a good approximation in the neighbourhood of
the stable points. One also finds the same values for the
populations αi, when taken at low temperature.
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17. W.T. Strunz, L. Diósi, N. Gisin, T. Yu, Phys. Rev. Lett.

83, 4909 (1999).
18. K.I. Petsas, A.B. Coates, G. Grynberg, Phys. Rev. A 50,

5173 (1994).
19. C. Cohen Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-

Photon Interactions (Wiley, New York, 1992).
20. J.D. Miller, R.A. Cline, D.J. Heinzen, Phys. Rev. A 47,

R4567 (1994).
21. S. Friebel, C. d’Andrea, J. Walz, M. Weitz, T.W. Hänsch,
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34. C. Triché, Ph.D. thesis, École Polytechnique, Paris, 1997.
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